CALCULATION OF NONSTATIONARY ELASTIC WAVES IN AN
ISOTROPIC LAYER
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A plane problem of nonstationary waves in an infinite isotropic layer is considered. A normal
force begins to act on the boundary of the layer at the instant t=0. The opposite side of the
layer is free from stresses. Using integral transformations, the solution of the problem is ob-
tained in terms of transforms. Expanding the transform solution in a series of exponential pow-
ers and inverting each term of the resulting series, the exact solution of the problem is analyti-
cally determined. The fields of stresses and velocities in the layer are calculated. The use of
analytical relationships for the calculation, in contrast to the calculation with finite~-difference
methods, allows us to fairly accurately determine the wave pattern and to eliminate the speci-
fic effects inherent in the difference equations. The calculation algorithm used in this work
allows us to calculate the solutions of the problem at any point of the layer. The results pre-
sented give an idea about the distribution of stresses and velocities of particles across the
thickness and in the longitudinal direction. The calculation of nonstationary problems by sum-
ming over waves, as is done in the present work, side by side with the methods presented in

[1, 2], allows transient wave processes in the layer to be represented in a more complete man-
ner.

Let a layer occupy a region bounded by the planes y=0 and y=1. The other two axes (x and z) are
perpendicular to the y axis and are located in the plane of the layer. As units of measurement in the prob-
lem we have taken the thickness of the layer, the velocity of the wave of expansion (cy), and the density of
the material. The time interval during which the wave of expansion covers a distance equal to the thickness
of the layer serves as a time unit.

In the boundary conditions we specify the distribution of the stress vector on the front side of the
layer y=0; on the rear side of the layer y =1 stresses are absent: ’
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Here by §(t) we have denoted the Heaviside unit function, while dis a real parameter of the load.
The initial conditions of the problem are zero.
The stresses and displacements do not depend on the z coordinate and are connected by the linear

relationships
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where €y are the strains in the layer.
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The longitudinal displacement u and the transverse displacement v in the layer must satisfy the equa-
tions
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In terms of the units of measurement adopted c, = VI is the velocity of the shear wave; A + 24 =1; A,
4 are the elastic constants of the material, and t is the time.

When solving the problem, we use the Laplace transformation with respect to t and the Fourier trans-
formation along the x axis
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Having applied the integral transformations to the equations of motion (3), we obtain a system of or-
dinary differential equations with constant coefficients. Solving the system and determining the values of the
constants in the general solution from the transformed boundary conditions (1). we find the transforms of
stresses and velocities in the isotropic layer
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By L, and L, we denote the denominators of the symmetric and antisymmetric parts of the solution
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The solution (4} describes all waves that arise as a result of multiple reflections from the boundaries.
We can represent the given solution in the form of a series of wave groups that undergo the same number of
reflections. For this we represent the solution (4) in the form of expansions in a series of exponential pow-
ers (sce, for example, (3]
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These expansions allow us to write ©, in the solution in the form of a sum of exponentials. Each
exponential determines the contribution to t‘me solution by a reflected wave corresponding to it
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We substitute the expansions (5) into the solution of the problem (4). The exponential multipliers of
each term in the solution indicate the delay of the original function for the given term. Thus, in the case of
a given time t we must retain a finite number of terms in the solution. Below the summation of waves is
written in detail.

We consider an arbitrary term in the solution (4)
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Heren, , are homogeneous functions of the first order, while ¢ is of the zeroth order. Transforms
of such form are inherent to simpler dynamic problems: the plane problem concerned with a disturbance
source in an infinite medium, the plane problem of Lamb for a half-space. In the given case the solution
of the problem with the characteristic dimensions (the thickness of the layer and the load parameter 6),
thanks to the expansions (5), can be represented as a sum of similar LF transforms.

When inverting (6), we use the method proposed in (4] (pp. 80-85, 194-201) and used in the solution of
the problem of Lamb for an isotropic half-space.

We represent the sought original function in (6) in the form
0= 0,(s.) -o_(s), s+=0-1ix (7

The functions o, and ¢ are the analytic functions s, in the right half-planes Re s, >0
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Since o, and o_ are analytic functions, they are completely determined by its values on the real half-
axes Res, =6>0. Taking into account the representation of the function ¢ in (7), from (8) we determine
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Having put q=p¢ in the case s_ >0, p >0. we obtain the L transform of the sought function
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The positive values of p lying on the right of the convergence abscissa completely determine the trans-
form as an analytic function of p.

We denote

amy (8) +Pmy (B) + 5.8 =t + a4 bp .>0 (11

The positive solution of Eq. (11) is the only one relative to t, since on the left there is the positive
(s, >0) monotonically increasing function
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Carrying out the substitution of the variables (11). we bring the L transform of the function o in the
expression (10) to the form
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On the right side (12) there stands the Laplace transform of the function
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which thus is the sought function. In the case 6 =0 we obtain the expression of the general term of the solu-
tion for a concentrated load.

When solving the problem on a digital computer, the expressions (13) were summed. The concrete
form of ¢ (1,¢) for each term emerges from (4) and '5). The values of { were determined numerically
from Eq.(11), which for o =0, 8 = 0, s, = 0 +ix # 0 is an equation of the fourth degree with complex coeffi-
cients. The degree of the equation is reduced if either @ or fis zero. If s_ =0 (the load on the surface of
the layer is concentrated and the wave process is considered on the axis of symmetry x= 0), then Eq. (11)
is reduced to a biquadratic equation. Although in this case £ is fairly simply expressed in terms of t and y.
it is not regarded as possible to present the solution in explicit form because of its cumbersomeness.

The solution for the tangential action on the front surface of the layer is obtained analogously. If in
the boundary conditions we replace 6 ,(t) by the impulse 6 ,(t), then also the u and v -displacements in the
layer will be expressed.

We write the algorithm of wave summation used in the problem during the calculation. In the expan-
sions of & . in the expressions \5), the quantities

Ay = exp (— ny — ny + myy), Ay = exp (— ny -+ nyy)
Ay = exp (— n — ng + nyy), Ay = exp(— ny + ngy)
By = exp (— ny), By = exp (— n, — nyy)
B, = exp (—nqy), By = exp (— ny — nyy)

stand as multipliers of Z, and 2,.

The terms with the coefficients A describe waves going from the rear side of the layer y=1 to the
front side y =0; the terms with the coefficients B; describe waves reflected from the front side and going
to the recar side of the layer. The radicals n; and n, of the indices of
the exponentials indicate the form of the wave, while the multipliers

‘g Y in front of them [see (5)] indicate the length of run of the wave across
i the thickness of the layer.
=2 7 We denote, as was done above [see (6)], by a (m, n) the multiplier
17 / in the index of the exponential for n,, and denote by 3 (m. n, k) the mul-
1y tiplier for n,. Let j determine the number of reflections which the
wave of expansion underwent, going out first from the disturbance source
2 on the boundary y=0. If t; is the time since the start of the process,
p then 0= j= E(ty) + 1 (F is the integer part of the number). Collecting
V4 M in Z ; and Z, waves traversing the thickness of the layer j times (o + =
ey T 2 I 1207l = =j), we determine the combinations of m, n, k, which describe all waves
that have been formed after the j-th reflection. In this way we single
Tig. 1 out all waves that have covered the same distance across the thickness
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of the layer. The fact that they proceed with different velocities (c, and ¢,) and, consequently, that reflec-
tions of the shear waves are delayed in time, will be taken into account later.

We find that for 2, and Z, with the multipliers A,, A,, By, B, in the case of an even j, m, n,k, theyvary
within the limits j2=n=<j, k=2n—j, 0=m =k, while in the case of an odd j they vary within the limits
(j+ VA2=n=j, k=2n-j, 0=m=k,

For waves described by the expression with the multipliers A3, A,, B;, B4 in the summation we must
make a shift, and namely, if j is even, then for j=2 we find j2=n=j—1,k=2n-j+1, 0=m=k. If, however,
jisodd and j= 3, then (j- D2=n=j—1,k=2n-j+1, 0=m=k.

In the calculation of the problem the number of reflections of waves from the surfaces of the layer
was determined as follows. In Fig. 1 by arrows we have indicated the directions along which one must
move to reach the straight line MM. Along the axes we have marked off the distance OM = j+ 1=! traversed
by the first wave of expansion up to the instant of \j+ 1)-th reflection. The nodes of the grid determine the
values of o and 8 at which the reflections took place. All possible paths up to the straight line MM, equal
to OM, determine all combinations of waves (the values @ and 8) which were formed after the j-th reflec-
tion. Having summed these waves (see the dependences of m, n, k on j presented above), we determine the
contribution of the given j-th reflection to the solution of the problem. To find the complete solution of
the problem, the sums obtained for the various j must be summed over j.

To take into account the delay of the shear waves, we mark off on the 8 axis the segment ON=c,t,.
The straight line MN in Fig. 1 (its equation is & + byB =ty) will cut off only those waves which managed to
arrive at the given point of the layer, i.e., commencing with j=E(c,t;), we must take into account waves for
which the inequality to+ ts = 0 +byf =ty is fulfilled. Here by t, and t  we have marked the times taken by
the expansion and shear waves in traversing across the thickness of the layer over the distances « and 8
respectively.

In the calculation of the problem the values of £ were determined from Eq. (11). For s, >0 x=0)
positive £ are the solutions of the equation. Extending the solution of the problem to values x >0, we must
analytically continue the solution of the equation into the domain of complex values. The values x <0 can be
ignored because of the symmetry of the problem about the y axis. From the analysis of the solutions of
Eq. (11) we can determine the signs of the real and imaginary parts of £&. It is shown that in the case x >0
in the region where disturbances exist Re {= 0, while Im £= 0. Thus, for positive values of x the roots of
Eq. (11 are located in the fourth quadrant of the complex & plane.

When calculating the waves in the layer, we assumed ¢,= 1/1.7. This corresponds to A = 0.89 L. Be-
low we have presented certain results of the calculations of the field of stresses and velocities of particles
in the layer under a load that is close to a concentrated load (6=0.01).

When a load distributed along the x axis acts at the instant of time t=0, all points of the surface are
subjected to a disturbance and it radiates expansion and shear waves. Straight-lined fronts propagating
in the direction of the y axis with the velocity of expansion and shear waves are the envelopes of these
waves. The finite jump undergone by the solution, when passing through the straight-lined front, decays
with time. Within these regions the values of stresses and velocities of particles are continuous, but they
have peaks at the points corresponding to the wave fronts in the case of a concentrated load. The peaks are
expressed the more sharply, the closer the load is taken to a concentrated load. For a concentrated load
the values of velocities of particles and stresses at these points become infinite. In the following, since
the load is taken to be close to a concentrated load, precisely these points will be called frontal points,

On the surface y=0 o, and o, are subjected to the boundary conditions (1), while 70, = —99.99 in the
case x=0,y=0,t= 1.9. Then, beginning with x=0.65, the value of o, becomes positive and has maxima at
the points of Rayleigh and shear waves

z = 1.9 cut ~ 1.025, mo,=33.97; 2=1.9 ¢,~1.11, na, = 0.75

Before the front of the shear wave, in the case of x=1.6 ¢, again becomes compressive and has a
minimum 7oy = —0.92 at the point x=1.875. Since disturbances reflected from the boundary y = 1 cannot
reach the boundary y =0, the wave field on the surface of the layer coincides with the wave field on the sur-
face of the half-space.

On the lower graphs of Fig. 2 we have represented the stresses inside the layer for y=0.2, 0=x=1.9,

t=1.9, where T Oy is the dotted line, Toy is the solid line, and TTO‘xy is the dash-dotted line. The fronts were
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constructed geometrically in order to determine the waves to which the peaks correspond. On the graph
the symbols p and s denote the traces of the fronts of expansion and shear waves. The sequence of symbols
points to the form of incident and reflected waves. The symbol k marks the trace of the straight-lined front
of the shear wave. The presence of a peak of oy at x -~ 0.9 is due. apparently. to a Rayleigh surface wave.
This peak, following directly the trace behind the peak on the front of the shear wave, is observed for y=0.4,
x ~0.85. The value of the stress o, at this point is

16, = 7 (0,)g + 7t {6,)p, — 0.181 -i- 0.589

Here we have isolated the contribution produced by the reflected longitudinal wave.

A calculation showed a growth in the disturbances at points of the straight-lined front k as y increases.
The stress o, on the axis of symmetry x =0, when moving away from the origin of the coordinates, from
compressive becomes tensile and increases. while oy. decreasing to zero at v : 1, remains compressive all
the time. The shear stress on the x = 0 axis is zero.

On the graphs of Fig. 2 we have also presented the values of the stresses 7o, . TOu TOy in the sec-
tion y = 0.2. calculated for the instant of time t-3. Since the solution was determined by summing over
waves. the contribution of each reflected wave to the solution is easily determined. In each term we can
single out a peak at the point of the front of the given wave. In this manner the traces of certain wave
fronts shown on the graph were approximately determined. From the graphs thus presented we see that
the stresso ymost often changes its sign. oscillating about zero. The stress Oy within a fairly large seg-
ment 0.7<x<2.4 is compressive., The shear stress % changes the sign approximately as many times as
there are reflected circular shear fronts. The shear stress changes the sign also when passing through
the straight-lined front of the shear wave k.

The graphs in Fig. 3 represent the velocities of particles for y=0.2 and t=1.9 (3w/ 8t is the solid line,
ov/dt is the dotted line). Using the example of the wave pp. we can examine the effect of the reflected wave
on the direction of the result velocity of particles. If up to the arrival of the reflected wave at points with-
in the s wave du/dt= 0 and dv/4t > 0. then the reflected expansion wave pp. in which du/dt= 0. dvAdt < 0.
"swings about” the resulting velocity. Here du/0t= 0. 0w/dl <0. The peaks at x = 1.6 determine the arrival
of the straight-lined front of the shear wave. The resulting velocity is directed to the surface y =0 and
almost coincides in direction with the straight-lined front of the shear wave.

The calculations were carried out on a BFSM-6 digital computer. When constructing the graphs. 77
points were taken on the segment 0=x=1.9. For the calculation of & G- Oy wat. 8v/ot at a single point
for t= 1.9 approximately 0.16 sec was used.
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We note the applicability of the calculation scheme presented in this paper to the determination of the

solution of an axisymmetric problem. This follows from the possibility of going from the Fourier trans-
formation over to the Hankel transformation {4, 5]. Formally in (13) we must replace x by r sin§ (r is the
radius from the origin of the coordinates) and integrate over the angle § from 0 to . The representation
of the solution in the form of a series and its investigation on the axis of symmetry can be found in (6, 7.
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